Idaho National Laboratory

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program

Advanced Vehicle Testing Activity

Hydrogen Station & Hydrogen ICE Vehicle Operations

Federal Network for Sustainability Idaho Falls, Idaho – July 2006 Jim Francfort

INL/CON-06-11569

Presentation Outline

- Background & Goal
- Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations
- Fuel Dispensing
- Hydrogen & HCNG Internal Combustion Engine (ICE)
 Vehicle Testing Activities
- Briefly, other AVTA Activities
- WWW Information

AVTA Background & Goal

- Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program
- These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA)
- AVTA Goal Provide benchmark data for technology modeling, research & development programs, as well as help fleet managers & other vehicle purchasers make informed purchase & operations decisions

AVTA Testing History

- Full-size pure EVs (40 models, 5 million test miles)
- Neighborhood EVs (15 models)
- Urban EVs (3 models, 1.75 million test miles)
- Hybrid EVs (11 models, 32 HEVs, 2 million miles)
- Hydrogen ICE vehicles (several models, 300k miles)
- Oil bypass filter testing (17 vehicles, 1.3 million miles)

APS Alternative Fuel (Hydrogen) Pilot Plant

- Partners Arizona Public Service (APS), ETA, INL, & DOE
- First & longest operating hydrogen station in the U.S. – since June 2002
- Hydrogen produced onsite
- Hydrogen & CNG fueling

Pilot Plant & Hydrogen ICE Vehicle Testing Objectives

- Evaluate the safety & reliability of operating ICE vehicles on 100% hydrogen & hydrogen/compressed natural gas (HCNG) blended fuels (15 to 50% HCNG)
- Evaluate hydrogen fueling infrastructure operations & costs
- Quantify hydrogen & HCNG ICE vehicle costs, performance & emissions

Pilot Plant – Hydrogen System

- Proton Energy Systems' HOGEN PEM stationary fuel cell operating in reverse
 - 300 scfh hydrogen output @ 150 psi
 - 17 kWh per 100 scf hydrogen
- Hydrogen Lectrodryer
 - -80°F dew point
- Pressure Dynamic Consultants (Pdc Machines)
 - 300 scfh @ 6,100 psi
- 8 Norman hydrogen filter locations
- Hydrogen 99.9997% purity

Pilot Plant - Hydrogen Storage

- Low pressure hydrogen storage (lower tank) -8,955 SCF @ 150 psi
- High pressure hydrogen storage (upper 2 tanks) -17,386 SCF @ 6,000 psi (total both tanks)

Pilot Plant - Emergency Shutdown System

- Ultra-fast IR/UV detectors
- Combustible gas detectors
- Manual (5) & remote trips
- Vent stack temperature monitor
- Alarms horns & strobe lights
- Vent stack fire suppression

Pilot Plant – Hydrogen Gas Detectors

- Six combustible gas detectors (Det-Tronics RS 8471)
- Monitors hydrogen & natural gas in 1% increments of lower flammability limits (LFL)
- · Alarm condition at 25% of LFL reached
- Emergency shutdown when 50% of LFL reached

Pilot Plant - Flame Detectors

- Two mid-level (35 feet) & four corner IR/UV flame detectors (Spectrex 20/20LB units)
- One detector at fuel dispenser unit
- If flame detected, emergency shutdown initiated within 3 milliseconds

Pilot Plant - CNG System

- CNG Boost Compressor
 - 300 scfm @ 60 psi
- CNG Main Compressor
 - 350 scfm @ 5,000 psi
- CNG Storage/Pressure 6 tanks
 - 3 Low: 11,079 scf @ 3,600 psi
 - 2 Medium: 5,711 scf @ 4,500 psi
 - 1 High: 5,711 scf @ 5,000 psi
 - Manufacturer: CP Industries

Pilot Plant - Fueling Dispensers

- Includes metering & electronic billing interface
- Fully permitted for motor fuel dispensing
- Public access

Prototype Dispenser Testing

- Uses proportional flow control valves for hydrogen & CNG gas streams from 100 to 40,000 scfh
- Real-time ratio control of blended fuels uses coriolis mass flow transducers in hydrogen & CNG gas streams
- 1 Nozzle CNG & HCNG fuels (15, 20, 30, & 50% hydrogen by volume) at 3,600 psi

• 1 Nozzle - 100% hydrogen at 5,000 psig

 Being commercialized by Clean Energy

Pilot Plant - Monitoring

- 8,000 fueling events & 10,000 kg of hydrogen produced
- Hydrogen kg energy costs based on historical (26% to 49%) & projected (70%) plant factors
 - \$3.43 down (26% PF) to \$2.39 per kg (70% PF)
 - DOE 2005 energy cost target \$2.47
- Water cost per kg of hydrogen \$0.10

Generation II Station Design

- Driven by commercial fueling station design requirements
 - Reduced setbacks to allow siting on a commercial corner
 - Reduced operator training to allow operation by service station personnel or vehicle operators
 - Reduced hazards to minimize the maximum potential accident
 - Multiple layers of safety to significantly reduce operating risk

Generation II Station Design

- Coaxial Containment System™
- Expandable modular design
- Envelopes most severe environmental conditions
- Exhaustive safety analysis to support permitting
- Zero setback requirements for flexible siting
- Shop assembled skid design
 - Assembly by ASME shop
 - Field welding minimized

Gen II - Coaxial Containment System™

- Double wall piping system
 - Shields process piping within a pressure containing pipe
 - Contains pressure waves resulting from any gas ignitions
 - Redirects any detonations to benign location
 - Allows inerting of annulus to prevent gas ignition
 - Eliminates need for blast setback
 - Protects process pipe from vandalism

Hydrogen & HCNG ICE Vehicle Testing

- Initial ICE hydrogen & HCNG vehicle testing
 - Dodge van on 15% HCNG (operating)
 - Ford F150 up to 30% HCNG (operating)
 - Ford F150 up to 50% HCNG (testing complete)
 - 100% hydrogen Mercedes Benz van (operating)

15% HCNG Dodge Van Emissions Testing

- 5.2 L CNG V8 (no modifications) with 71,000 HCNG test miles no problems
- 27,000 miles of 15% HCNG fuel data 15.5 miles/GGE

Percentage change in 15% HCNG emissions compared to 100% CNG emissions		
Total hydrocarbons	-34.7%	
Carbon monoxide	-55.4%	
Oxides of nitrogen	+92.1%	
Carbon dioxide	-11.3%	

30% HCNG F150 Testing

- 5.4 L V8 CNG engine added: supercharger, ignition modifications & exhaust gas recirculator
- Fleet testing 59,000 30% HCNG miles: 17.3 miles/GGE

Fuel Blend	0 to 60 mph (secs.)	Miles/GGE	Range (miles)
CNG	10.10	23.3	122
15% HCNG	10.97	22.6	110
30% HCNG	12.68	23.5	102

30% HCNG F150 Emissions Testing

Fuel	Percentage Change in Emissions Testing					
Туре	NMHC	CH₄	нс	СО	NO _x	CO ₂
Gasoline	Base	Base	Base	Base	Base	Base
CNG	-80	+967	+35	-63	-34	-24
15% HCNG	-78	+1000	+40	-70	-26	-27
30% HCNG	-89	+1050	+37	-73	-25	-28

NMHC=Non-Methane Hydrocarbons HC=Total Hydrocarbons NOx=Oxides of Nitrogen CH₄=Methane CO=Carbon Monoxide CO₂=Carbon Dioxide

50% HCNG F150 Emissions Testing

- Modifications
 - SVO heads, exhaust intercooler & supercharger
 - Exhaust gas recirculator & ignition modification
 - Equipped with 3 Quantum hydrogen 3,600 psi tanks with 3 kg total storage

Percent reduction in emissions (HCNG versus gasoline-fueled F-150)

нс	СО	NO _X	CO ₂
-3.5%	-43.3%	-97.0%	-16.7%

HC = total hydrocarbons CO = carbon monoxide CO₂ = carbon dioxide NOx = oxides of nitrogen

HCNG ICE Vehicle Testing

- APS meter reader fleet 12 Bifuel vehicles (GM)
 - 1,600 fueling events, 190,000 miles using 10,600 GGE of 15% HCNG
- Public Fleet private party Bifuel conversions
 - 350 fueling events, 36,000 miles (estimated) using 1,800 GGE of HCNG blends (mostly 15%)

5.4L 16-valve 100% Hydrogen ICE Vehicle

- 5.4L V-8, 100% hydrogen 16-valve Ford/ETEC pickup
- 5 speed transmission, supercharged (3 psi boost), hydrogen fuel injectors, & air-to-water intercooler
- Hardened valves & seats, & forged pistons with 12:1 compression
- Motec fuel & spark controls, lean-burn mode
- Onboard hydrogen storage 3 Dynetek tanks @ 3,000 psi, 6.5 kilograms, aluminum vessel & fiberglass wrap
- Converted by ETEC
- 1,365 lbs payload

5.4L 16-valve 100% Hydrogen ICE Vehicle

- Baseline Performance testing results
 - Maximum speed @ 1 mile: 81 mph & 1/4 mile: 58 mph
 - Acceleration (0 to 50 mph): 18.1 seconds
 - SAE J1634 fuel economy (AC on): 14.5 miles/GGE
 - SAE J1634 fuel economy (AC off): 18.0 miles/GGE
 - 45 mph constant speed fuel economy: 27.0 miles/GGE
 - Range 95 (14.5 miles/GGE) to 175 miles (27 miles/GGE)
- Fleet testing 4,500 miles: 17.4 miles/GGE (110 miles range)

5.4L 32-valve 100% Hydrogen ICE Vehicle

- 5.4L V-8, 100% hydrogen 32-valve Ford/ETEC pickup
- Automatic transmission, hydrogen fuel injectors, 12 pounds supercharger boost & air-to-air intercooler
- Hardened valves & seats, & forged pistons with 11.5:1 compression
- Motec fuel & spark controls, lean-burn mode
- 7,500 fleet testing miles 14.4 miles/GGE
- Onboard hydrogen storage 3 Dynetek tanks @ 5,000 psi, 15.3 kilograms (230 miles range)
- Converted by ETEC

6L V-8 100% Hydrogen ICE Vehicle

- Base vehicle: Chevrolet 1500HD crew cab (4 door) with 6L V8 CNG engine
- Converted by ETEC/Roush to 100% hydrogen
- 4-speed automatic transmission, electronic port fuel injection, supercharger, liquid-to-air intercooler
- Integration of powertrain control module & development of hydrogen lean-burn control strategies
- Implementation of J1850 communications to maintain seamless integration with existing OEM equipment

6L V-8 100% Hydrogen ICE Vehicle – cont'd

- 10.5 kg 100% hydrogen storage onboard @ 5,000 psi
- 200 Horsepower & 260 lb-ft torque
- Anticipated 15 miles per GGE & range 155 miles
- Targeted to meet NOx requirements for 2007 Tier II, Bin 7 standards
- HC < 10 ppm & NOx < 25 ppm on engine dynamometer
- Nine vehicles produced
- In baseline performance testing
- 8 units to Vancouver B.C.

Hybrid Electric Vehicle (HEV) Testing

- 32 HEVs, 11 HEV models in fleet testing
 - 160,000 miles (36 months) per HEV, 2 of each model
 - Fuel use, maintenance requirements, insurance,
 licensing & depreciation costs = life-cycle costs
- Baseline performance (track/dyno) testing
 - Beginning & end of life vehicle performance
 - End of life battery performance
- 1.98 million HEV test miles

Plugin HEV (PHEV) Testing

- Collecting fleet data on 7 Energy CS Prius PHEVs
- Obtaining PHEVs for extensive testing, including
 - Energy CS Prius
 - Hymotion Prius
 - Renault Kango
- Likely PHEVs obtained in FY-2007
 - Renault Cleanova
 - Hymotion & Energy CS Escapes
 - Dodge/EPRI Sprinter (late CY-2007?)

Neighborhood Electric Vehicle Testing

- 15 NEVs successfully completed NEVAmerica baseline performance testing (max speed, range, acceleration, braking, charging), includes 8 GEMs
- Fleet testing of 100+ NEVs
- Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet - Report
- Next test vehicle:
 - Ford Courier class NEV pickup from Roush

Oil Bypass Filter System Evaluation

- Goal: Examine oil bypass filter effectiveness, & demonstrate & quantify engine oil use reductions
- Filters clean partial flow of oil down to 1 micron, have evaporative units, & some with additive packages
- Puradyn systems on 8 buses & Refined Global Solutions systems on 3 buses – all 4 stroke)
- Puradyn filter systems 6 Tahoes

Oil Bypass Filter System Evaluation

- Test oil quality for 28 variables total base number, oxidation & nitration levels, contaminants (metals, water, soot, & fuel), & track makeup oil use
- 1.3 million test miles
- Oil change avoidance: 90% buses & 90% Tahoes

INL Alternative Fuel Fleet (318 vehicles)

- 79 B20 motor coach buses
- 7 Dedicated LNG motor coach buses
- 154 Bi-fuel light-duty CNG vehicles
- 52 Bi-fuel E85 (85% ethanol) pickups/SUVs
- 22 Bi-fuel LNG pickups
- 2 Dedicated CNG vans (injector tests Ford & Bosch)
- 2 Dedicated propane light-duty vehicles

INL Alternative Fuel Infrastructure

- INL 900 sq. mile DOE facility in Eastern Idaho
- Liquid natural gas (LNG) / compressed natural gas (CNG) station at "site"
- CNG station in Idaho Falls
- E85 (85% ethanol / 15% gasoline) station at "site"
- B20 (20% biodiesel / 80% diesel) station at "site"

Acknowledgement

This work is supported by DOE's FreedomCAR and Vehicle Technologies Program

Vehicle Systems Team Leader, Tien Duong Project Leader and VSATT Lead, Lee Slezak

http://avt.inl.gov

INL/CON-06-11569